
Package: pedbuildr (via r-universe)
September 7, 2024

Title Pedigree Reconstruction

Version 0.3.0.9000

Description Reconstruct pedigrees from genotype data, by optimising
the likelihood over all possible pedigrees subject to given
restrictions. Tailor-made plots facilitate evaluation of the
output. This package is part of the 'pedsuite' ecosystem for
pedigree analysis. In particular, it imports 'pedprobr' for
calculating pedigree likelihoods and 'forrel' for estimating
pairwise relatedness.

License GPL-3

URL https://github.com/magnusdv/pedbuildr

BugReports https://github.com/magnusdv/pedbuildr/issues

Depends pedtools (>= 2.2.0), R (>= 4.1.0)

Imports forrel (>= 1.5.0), glue, pedmut, pedprobr, ribd

Suggests testthat

Encoding UTF-8

Language en-GB

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Repository https://magnusdv.r-universe.dev

RemoteUrl https://github.com/magnusdv/pedbuildr

RemoteRef HEAD

RemoteSha 953063b1560d6e30bef2e7e8a5e66d8c618976c6

Contents
buildPeds . 2
reconstruct . 4
trioData . 7
Tutankhamun . 7

1

https://github.com/magnusdv/pedbuildr
https://github.com/magnusdv/pedbuildr/issues

2 buildPeds

Index 9

buildPeds Build a list of pedigrees

Description

Build all pedigrees between a set of individuals, subject to given restrictions.

Usage

buildPeds(
labs,
sex = 1,
extra = "parents",
age = NULL,
knownPO = NULL,
knownSub = NULL,
allKnown = FALSE,
notPO = NULL,
noChildren = NULL,
connected = TRUE,
maxInbreeding = 1/16,
linearInb = FALSE,
sexSymmetry = TRUE,
verbose = TRUE

)

Arguments

labs A character vector of ID labels.

sex A vector of the same length as labs, with entries 1 (male) or 2 (female).

extra Either the word "parents" (default), or a non-negative integer. See Details.

age A numeric or character vector. If numeric, and age[i] < age[j], then indi-
vidual i will not be an ancestor of individual j. The numbers themselves are
irrelevant, only the partial ordering. (No inference is made about individuals
of equal age.) Alternatively, for finer control, age may be a character vector of
inequalities, e.g., age = c("1>2", "1>3").

knownPO A list of vectors of length 2, containing the ID labels of pairs known to be parent-
offspring. By default, both directions are considered; use age to force a specific
direction.

knownSub A ped object involving a subset of the labs individuals.

allKnown A logical. If TRUE, no other pairs than knownPO will be assigned as parent-
offspring. If FALSE (default), all pairs except those in notPO are treated as
potential parent-offspring.

buildPeds 3

notPO A list of vectors of length 2, containing the ID labels of pairs known not to be
parent-offspring.

noChildren A vector of ID labels, indicating individuals without children of their own.

connected A logical. If TRUE (default), only connected pedigrees are returned.

maxInbreeding A single numeric indicating the highest permitted inbreeding coefficient. De-
fault: 1/16 (as with first-cousin parents.)

linearInb A parameter controlling the maximum separation of linearly related spouses. Ei-
ther TRUE (allow all linear inbreeding), FALSE (disallow all) or a non-negative
integer. For example, linearInb = 1 allows parent/child mating, but not grand-
parent/grandchild or more distant linear relatives. Default: FALSE.

sexSymmetry A logical. If TRUE (default), pedigrees which are equal except for the gender
distribution of the added parents, are regarded as equivalent, and only one of
each equivalence class is returned. Example: paternal vs. maternal half sibs.

verbose A logical.

Details

The parameter extra controls which of two algorithms are used to create the pedigree list.

If extra is a nonnegative integer, it determines the number of extra individuals allowed in the
iterative pedigree construction. These extras start off with undetermined sex, meaning that both
males and females are used. It should be noted that the final pedigrees may contain additional
extras, since missing parents are added at the end.

If extra is the word "parents", the algorithm is not iterative. It first generates all directed acyclic
graphs between the original individuals. Then their parents are added and merged in all possible
ways. This option has the advantage of not requiring an explicit/ad hoc number of "extras", but
works best in smaller cases.

Value

A list of (possibly disconnected) pedigrees.

Examples

Two individuals + 1 extra
plist = buildPeds(1:2, extra = 1, age = "1>2")
plot(plist)

Allow disconnected
plist2 = buildPeds(1:2, extra = 1, age = "1>2", connected = FALSE)
plot(plist2, frames = TRUE)

Note that full sibs require 2 extras
plist3 = buildPeds(1:2, extra = 2, age = "1>2")
plot(plist3)

With 2 extras, allowing any inbreeding
plist4 = buildPeds(1:2, extra = 2, age = "1>2", maxInbreeding = 1)
plot(plist4)

4 reconstruct

Full sibs are also included when `extra = "parents"`
plist5 = buildPeds(1:2, extra = "parents", age = "1>2")
plot(plist5)

reconstruct Pedigree reconstruction

Description

Reconstructs the most likely pedigree from genotype data.

Usage

reconstruct(
x,
ids,
extra = "parents",
alleleMatrix = NULL,
loci = NULL,
pedlist = NULL,
inferPO = FALSE,
sex = NULL,
age = NULL,
knownPO = NULL,
knownSub = NULL,
allKnown = FALSE,
notPO = NULL,
noChildren = NULL,
connected = TRUE,
maxInbreeding = 1/16,
linearInb = FALSE,
sexSymmetry = TRUE,
sortResults = TRUE,
founderInb = 0,
numCores = 1,
verbose = TRUE

)

Arguments

x A pedtools::ped object or a list of such.

ids A vector of ID labels from x. By default, the genotyped members of x are used.

extra Either the word "parents" (default), or a non-negative integer. See Details.

alleleMatrix A matrix with two columns for each marker. By default extracted from x

reconstruct 5

loci A list of marker attributes. By default extracted from x.

pedlist A list of pedigrees to optimise over. If NULL, buildPeds() is used to generate
a list.

inferPO A logical. If TRUE, an initial stage of pairwise IBD estimation is done to infer
high-confidence parent/child pairs, and also non-parent/child pairs. When this
option is used, arguments to knownPO and notPO are ignored.

sex A vector of the same length as labs, with entries 1 (male) or 2 (female).

age A numeric or character vector. If numeric, and age[i] < age[j], then indi-
vidual i will not be an ancestor of individual j. The numbers themselves are
irrelevant, only the partial ordering. (No inference is made about individuals
of equal age.) Alternatively, for finer control, age may be a character vector of
inequalities, e.g., age = c("1>2", "1>3").

knownPO A list of vectors of length 2, containing the ID labels of pairs known to be parent-
offspring. By default, both directions are considered; use age to force a specific
direction.

knownSub A ped object involving a subset of the labs individuals.

allKnown A logical. If TRUE, no other pairs than knownPO will be assigned as parent-
offspring. If FALSE (default), all pairs except those in notPO are treated as
potential parent-offspring.

notPO A list of vectors of length 2, containing the ID labels of pairs known not to be
parent-offspring.

noChildren A vector of ID labels, indicating individuals without children of their own.

connected A logical. If TRUE (default), only connected pedigrees are returned.

maxInbreeding A single numeric indicating the highest permitted inbreeding coefficient. De-
fault: 1/16 (as with first-cousin parents.)

linearInb A parameter controlling the maximum separation of linearly related spouses. Ei-
ther TRUE (allow all linear inbreeding), FALSE (disallow all) or a non-negative
integer. For example, linearInb = 1 allows parent/child mating, but not grand-
parent/grandchild or more distant linear relatives. Default: FALSE.

sexSymmetry A logical. If TRUE (default), pedigrees which are equal except for the gender
distribution of the added parents, are regarded as equivalent, and only one of
each equivalence class is returned. Example: paternal vs. maternal half sibs.

sortResults A logical. If TRUE (default), the output is sorted so that the most likely pedigree
comes first.

founderInb A number in the interval [0,1], used as background inbreeding level in all
founders. Default: 0.

numCores A positive integer. The number of cores used in parallelisation. Default: 1.

verbose A logical.

Details

The parameter extra controls which of two algorithms are used to create the pedigree list.

If extra is a nonnegative integer, it determines the number of extra individuals allowed in the
iterative pedigree construction. These extras start off with undetermined sex, meaning that both

6 reconstruct

males and females are used. It should be noted that the final pedigrees may contain additional
extras, since missing parents are added at the end.

If extra is the word "parents", the algorithm is not iterative. It first generates all directed acyclic
graphs between the original individuals. Then their parents are added and merged in all possible
ways. This option has the advantage of not requiring an explicit/ad hoc number of "extras", but
works best in smaller cases.

Value

An object of class pedrec, which is essentially list with the following entries:

• labs: The individual labels as given in ids.

• pedlist: A list of pedigrees, either built by buildPeds() or as supplied in the input argument
pedlist. If sortResults = TRUE, the list is sorted so that the most likely pedigrees come first

• logliks: A numerical vector of pedigree log-likelihoods

• kappa: A data frame with pairwise estimates (if inferPO = TRUE)

• alleleMatrix: A matrix of marker alleles

• loci: A list of marker locus attributes

• errPeds: A list of pedigrees for which the likelihood calculation failed

• errIdx: The indices of pedigrees in errPeds as elements of pedlist

Examples

#-----------------
Example 1: Trio
#-----------------

Built-in dataset `trioData`
x = singletons(1:3) |>

setMarkers(alleleMatrix = trioData, locusAttributes ="snp12")

res = reconstruct(x, inferPO = TRUE, age = "1 > 2")

Plot most likely pedigrees
plot(res, top = 6)

#--------------------
Example 2: Siblings
#--------------------
library(forrel)

ids = c("s1", "s2")

Create pedigree and simulate profiles with 20 STR markers
y = nuclearPed(children = ids) |>

profileSim(markers = NorwegianFrequencies[1:20], ids = ids, seed = 123)

Reconstruct allowing 2 extra individuals and any inbreeding

trioData 7

res2 = reconstruct(y, extra = 2, maxInb = 1)
plot(res2)

With mutation modelling
y = setMutmod(y, model = "equal", rate = 0.01)
res3 = reconstruct(y, extra = 2, maxInb = 1)
plot(res3)

trioData Reconstruction example with three individuals

Description

This dataset contains simulated genotypes for 3 individuals at 100 SNP markers.

Usage

trioData

Format

A matrix with 3 rows and 100 columns. Each entry contains a genotype in the form a/b.

Examples

trioData[, 1:10]

x = singletons(1:3) |>
setMarkers(alleleMatrix = trioData, locusAttributes ="snp12")

x

Tutankhamun Pedigree of Tutankhamun

Description

A reconstructed pedigree of the Egyptian Pharaoh Tutankhamun, with genotypes for 8 STR mark-
ers, as published by Hawass et al.

Usage

Tutankhamun

8 Tutankhamun

Format

A data frame with 7 rows and 12 columns:

• id,fid,mid,sex: Pedigree columns in standard format

• D13S317, ...: Genotype columns for 8 markers

Source

Hawass et al. Ancestry and pathology in King Tutankhamun’s family. Jama (2010).

Examples

Pedigree as published
plot(Tutankhamun)

Simple reconstruction, assuming all directly related
res = reconstruct(Tutankhamun, extra = 0, inferPO = TRUE, maxInbreeding = 1)
plot(res, top = 4)

Published ped is most likely (with these assumptions)
identical(res[[1]], Tutankhamun)

Index

∗ datasets
trioData, 7
Tutankhamun, 7

buildPeds, 2
buildPeds(), 5, 6

reconstruct, 4

trioData, 7
Tutankhamun, 7

9

	buildPeds
	reconstruct
	trioData
	Tutankhamun
	Index

